未来的诗和远方,或许是机器人为我们“负重前行”******
近日,美国研究人员在探索一种新的机器人训练方法时发现,对工具的语言描述可以促使模拟机器人加速学习使用各种工具,也就是说,熟练使用工具的机器人可以帮助人类完成重复性或挑战性任务。
根据用途的不同,机器人可以被划分为工业机器人、服务机器人以及特种机器人,其中“服务机器人”与我们的生活最为贴近。它们正在为不断上升的劳动成本提供解决方案,并开启了一种崭新的人机互动方式。今天,一起来看看世界各地的机器人在为我们的生活做着哪些努力吧!
图源:pixabay
01
赶配送
目前,一些配送机器人已经可以通过使用多传感器导航系统,在导航过程中辨别二维或三维的结构,精准、灵敏地识别障碍,实现厘米级避障、秒级反应速度,大幅度提高对环境的感知能力,保证配送过程的导航稳定性。华盛顿Steak N Egg Diner餐厅老板奥斯曼·巴里(Osman Barrie)从一家名为Bear Robotics的初创公司租用了一台名为“Servi”的机器人,负责摆桌子、供应食品和饮料。
图源:巴伦周刊
02
跳舞蹈
美国工程与机器人设计公司波士顿动力(Boston Dynamics)联动自家的四足机器人Spot和人形机器人Atlas跳起了男团舞。它不仅可以完成动作,还能将歌曲MV中的人物动作模仿出来。这些舞蹈的展示不但有趣,还体现了机器人之间如何稳健、灵活地合作。
图源:Boston Dynamic
03
做手术
医学手术通常要求高精度操作。以玻璃体视网膜眼科手术为例,理想手术操作精度要求为10微米,是头发直径的1/8。而医生手部物理抖动幅值一般为100微米,这意味着完成一台高精度手术对医生的要求极其苛刻。
有了手术机器人的介入,医生可以在相机反馈的辅助下,利用操纵杆控制眼球切口中的微型视网膜手术机器人R2D2,将起皱的视网膜(厚度仅有10微米)铺平,修复病人的视力。
图源:pixabay
04
修动车
配备机器视觉、图像识别等技术,动车组检测机器人已经拥有了动车一级检修作业能力。
它由检测机器人、中心服务器、手持移动终端、列位检测和信息管理平台等五大模块组成,可全自动检测所有型号动车组车底和转向架可视部件,具备数据无线传输、故障自动判断等功能,作业效率是人检的2.75倍。
图源:pixabay
05
做刑侦
日本机器人公司SBRH研发了一款机器人Pepper,可以对人类的面部表情进行识别和解读,与人脸识别技术相伴而生。通过对人类情感甚至是心理活动的有效识别,使机器人获得类似人类的观察、理解、反应能力,可应用于机器人辅助医疗康复、刑侦鉴别等领域。
图源:中国机械工程学会
06
助行走
2014年,世界杯开幕式首次由一位瘫痪少年负责开球。这位少年借助先进的机械外骨骼结构,通过大脑意识从轮椅上站起来大脚开球。
机械外骨骼结构被视作“可穿戴的机器人”,兼具有机器人的智能性与人体骨骼的仿生性:外骨骼通过各类传感器探测脑内电极和肌肉电信号,将活动信号传输给机器人,机器人再进行具体的机械动作。
图源:环球网
07
做清洁
目前使用最普遍的是清洁机器人。随着技术的迭代升级,清洁机器人的功能逐渐多样化,也可以满足多样化清洁需求,已经应用至交通枢纽、写字楼、园区等诸多场景。同时,清洁机器人的产品品类也日渐多元化,除了可以地面清洁之外,还出现了泳池清洁机器人以及解决幕墙清洗难题的高空清洁机器人。
图源:pixabay
08
忙配药
零售药店沃博联(WBA)正在研究使用机器人技术来配药。目前该公司配置了9个自动化“微型配送”中心,机器人可以配制80种不同的药物,为2000多家药房提供支持,每小时最多可以处理300张处方的配药,这与一家人手充足的药房一天配药数量相同。
这不仅是为了节省劳动力成本,还可以缩短病人在药房里的等待时间,药剂师可以投入更多精力为病人提供咨询服务,处理紧急处方需求等。
图源:pixabay
09
进厨房
美国连锁餐厅Chipotle Mexican Grill (CMG)最近开始在洛杉矶测试机器人Chippy,这款机器人专门用来制作玉米片。它能把玉米片浸入热油中,搅动油锅中的篮子,然后用盐和酸橙调味。CMG首席技术官库尔特·加纳(Curt Garner)称,虽然仍然需要人工打包和上菜,但在订单激增的午餐高峰期机器人是不可或缺的。
图源:pixabay
10
帮搜救
哈佛大学的研究人员从蚂蚁中获得灵感,利用“光激素”设计出一组机器人RAnts。这种机器人可以相互响应,协同工作,并对环境做出反应。RAnts 仅通过简单的本地规则进行编程,遵循光敏场的梯度,避开光敏素密度高的其他机器人,并在光敏素密度高的地方捡起障碍物,然后将它们扔到光敏素密度低的地方。
根据这些规则机器人可以实现复杂的集体“越狱”行动,并在未来应用于解决复杂的问题,如建筑、搜救和防御。
图源:网络
机器人的功能多样化离不开其3D视觉系统、位置测绘以及机械工程的进步。“集群智能”(swarm intelligence)也越来越帮助机器人共享任务并一起工作。此外,通过5G或Wi-Fi网络连接,可以实现对机器人的远程监控、编程和故障排除。
知识的量化与技术的进步不断为机器人带来新变化,而对于人本身而言,其最宝贵的智慧与灵性终究不可量化。如何做好机器与人的协同共生是未来我们共同面对的课题。
审核:张宁 策划:李政葳 撰文:穆子叶 编辑:李飞
参考 |新华社、参考消息网、科学网、科技日报、虎嗅
ChatGPT搞钱行不行******
一系列的试探之后,AI聊天机器人ChatGPT的收费计划浮出水面。当地时间2月1日,人工智能实验室Open AI在其官网宣布将推出“ChatGPT Plus”付费订阅版本,每月收取20美元。免费了两个月,月活用户却达1亿的ChatGPT,终于踏上了自己的“赚钱路”,由此,AIGC商业化落地的探讨也陡然升温。不少人迫切地想知道,ChatGPT Plus会不会是AIGC从烧钱到赚钱的关键转折。
免费服务仍将继续
“新晋顶流”ChatGPT用收费计划再次搅动了AI圈的一池春水。根据Open AI的公告,订阅ChatGPT Plus服务的用户,即使在高峰时段,也可获得该聊天机器人更快速的回应,而且可以提前体验新功能和改进。
去年11月,ChatGPT横空出世,不仅能够通过学习和理解人类的语言与用户进行对话,还能根据上下文互动,甚至能够完成撰写文案、翻译等工作。得益于这种突破性的使用体验,ChatGPT迅速蹿红。
当地时间2月1日,瑞银发布研究报告称,截至今年1月,近期爆火的ChatGPT在推出仅两个月后,其月活跃用户估计已达1亿,成为历史上用户增长最快的消费应用。同样的成绩,海外版抖音TikTok在全球发布后,花了大约9个月的时间,Instagram则花了两年半的时间。
但大量用户涌入的同时,也导致ChatGPT经常在流量压力之下无法提供及时的回应,此次收费版的ChatGPT Plus针对的便是这一痛点。
据悉,付费计划将在未来几周内首先在美国推出,然后扩展到其他国家。但ChatGPT Plus的推出并不意味着取代免费版的ChatGPT,Open AI表示,将继续为ChatGPT提供免费访问。
烧不起的模型成本
尽管只推出了两个月,但Open AI对于ChatGPT的收费计划却已经暗示了有一阵子。早在1月初,Open AI就曾提出过专业版ChatGPT的计划,宣布“开始考虑如何使ChatGPT货币化”,并公布了一项调查。什么价格以上会无法接受?什么价格以下会觉得太便宜?诸如此类关于定价的问题皆在其中。
有用户曾在社交媒体上提问ChatGPT是否会永久免费,对此,Open AI首席执行官Sam Altman回应称:“我们将不得不在某个时间点,以某种方式将其商业化,因为运算成本令人瞠目结舌。”Sam Altman曾透露,ChatGPT平均每次的聊天成本为“个位数美分”。
“这类大模型训练成本非常高。”在接受北京商报记者采访时,瑞莱智慧高级产品经理张旭东表示。
但相对训练来说,模型推理,也就是用户提交输入模型输出结果的过程,这一成本会更高。“据说ChatGPT在开放测试阶段每天要花掉200万美元的服务器费用,所以前段时间免费的公测也停止了,如何降低模型推理的消耗也是目前的一个重要研究问题。”张旭东称。
“钱景”在哪
长久以来,广阔的市场前景和难以盈利的现状几乎成为了AI领域难以平衡的理想和现实,对ChatGPT或者说是以ChatGPT为代表的AIGC也是一样。
洛克资本副总裁史松坡对北京商报记者分析称,ChatGPT受到广泛认可的重要原因是引入新技术RLHF,即基于人类反馈的强化学习。在史松坡看来,ChatGPT是一个高效的信息整合助手,可以取代大量人类中初级助理的角色。
但他同时提到,目前ChatGPT在海外英文环境中已经能胜任图画创作、音乐创作、文字整理、信息搜集综合、基础编程和金融分析,但还不能胜任高频度的人类主观决策,比如大型投资决策、政治战略决策等。
天使投资人、知名互联网专家郭涛认为,ChatGPT在重塑众多行业或场景的同时也孕育着巨大的商机,将推动众多行业快速变革,有望在AIGC、传媒、娱乐、教育、客户服务、医疗健康、元宇宙等领域快速落地,具有万亿级市场规模。
张旭东认为,AIGC商业化落地还需要结合应用场景,目前基于生成式大模型的商业应用案例还比较少,就以当下的技术水平看,一两年内达到很好的AGI(通用人工智能)水平还是不太现实的,所以一定需要有垂直领域的创新公司来基于OpenAI等公司的工作来寻找合适的场景落地。
AIGC商业化,侵权与被侵权
AIGC要想商业化,场景只是其一。伴随着ChatGPT的爆火,争议始终并行,比如AI绘画面临的版权探讨。学术界也已针对ChatGPT做出了反应,权威学术出版机构Nature规定,ChatGPT等大模型不能被列为作者。纽约市教育部门曾表示,纽约公立学校的所有设备和网络上将禁止使用ChatGPT。
张旭东认为,目前AIGC最为成熟的应用在内容作品创作上,但从专业角度看,AIGC属于模仿创新,并不具备真正的创造力,AIGC的作品可能对一些艺术家、创作家的风格题材造成侵权;另一方面,AIGC作品也存在被他人侵权的风险。
此外,就安全性问题而言,AIGC这种深度生成能力很可能被滥用于伪造虚假信息,比如生成一些敏感性的有害信息,甚至伪造新闻信息恶意引导社会舆论,而且这些生成式内容难以分辨追踪,大幅增加对信息治理的挑战难度。信息获取也是AIGC需要解决的问题之一。
郭涛则提到,当前AIGC赛道尚处于孕育探索阶段,存在关键核心技术不成熟、免费素材资源较少、内容堆砌且质量参差不齐、成熟的商业应用场景较少、相关法律法规不健全及技术伦理挑战等突出问题,短期内还难以实现大规模商业化应用。
北京商报记者 杨月涵
(文图:赵筱尘 巫邓炎)